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Abstract Signals recorded from neurons with extracellular
planar sensors have a wide range of waveforms and ampli-
tudes. This variety is a result of different physical conditions
affecting the ion currents through a cellular membrane. The
transmembrane currents are often considered by macro-
scopic membrane models as essentially a homogeneous
process. However, this assumption is doubtful, since ions
move through ion channels, which are scattered within the
membrane. Accounting for this fact, the present work
proposes a theoretical model of heterogeneous membrane
conductivity. The model is based on the hypothesis that both
potential and charge are distributed homogeneously on the
membrane surface, concentrated near channel pores, as
the direct consequence of the inhomogeneous transmem-
brane current. A system of continuity equations having non-
stationary and quasi-stationary forms expresses this fact
mathematically. The present work performs mathematical
analysis of the proposed equations, following by the syn-
thesis of the equivalent electric element of a heterogeneous
membrane current. This element is further used to construct a
model of the cell-surface electric junction in a form of the
equivalent electrical circuit. After that a study of how the
heterogeneous membrane conductivity affects parameters of
the extracellular electrical signal is performed. As the result
it was found that variation of the passive characteristics of the
cell-surface junction like conductivity of the cleft and the
cleft height could lead to different shapes of the extracellular
signals.
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Introduction

Techniques of extracellular electrical recording and stimu-
lation have made significant progress since the introduction
of the first planar microelectrode arrays and field-effected
transistors (Thomas et al. 1972; Bergveld et al. 1976; Gross
et al. 1977) (Fig. 1). Microelectrode arrays fabricated
according to modern semiconductor technologies often
integrate multiple elements of passive and active circuitry.
Arrays are used to effectively record, amplify and condi-
tion extracellular signals as well to perform extracellular
stimulation (Eversmann et al. 2003; Lambacher et al.
2004). Nowadays microelectrode arrays are considered a
basic platform for the development of cell-based sensors
(Parce et al. 1989; DeBusschere and Kovacs 2001; Yeung
et al. 2001; Pancrazio et al. 2003).

The application of microelectrode arrays gave a start to
the long-term investigation of different dynamic processes
taking place in cell cultures and tissue slices (Besl and
Fromherz 2002; Heuschkel et al. 2002; Jimbo et al. 2006).
A diversity of shapes and a wide range of amplitudes of
signals recorded with planar electrodes from different
neurons have been reported (Gross 1979; Regehr et al.
1989; Bove 1995; Breckenridge et al. 1995; Jenkner and
Fromherz 1997; Schatzthauer and Fromherz 1998; From-
herz 1999; Ruardij et al. 2009). Signals were generally
classified (arranged in types) according to the waveform
and amplitude (Fromherz 2003). This classification is used
conventionally for spike detection and sorting in the cell
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Fig. 1 Schematic view of an electrode covered with neurons

population (Salganicoff et al. 1988; Sarna et al. 1988) as
well as for an individual cell characterization (Stett et al.
2003). In cited papers all signal types were explained as
originating from and being simulated on the basis of sev-
eral possible mechanisms: the asymmetry of the cell soma
and neurite shapes (Bove et al. 1994; Gold et al. 2006),
variability of sealing resistance in the neuron-electrode
electrical contact (Grattarola and Martinoia 1993) and the
membrane channel distributions (Jenkner and Fromherz
1997; Schatzthauer and Fromherz 1998; Fromherz 1999;
Buitenweg et al. 2002).

Up to date main models for signal simulation are: cur-
rent source field integration (Plonsey 1964; Plonsey and
Barr 2007), equivalent electric circuits (Regehr et al. 1989;
Grattarola and Martinoia 1993) and geometry-based finite-
element modeling (Buitenweg et al. 2002; Heuschkel et al.
2002). In these models the membrane current is described
with a stationary continuity equation. In the integrated
form, the stationary continuity equation corresponds to
Kirchhoff’s law. According to Kirchhoff’s law, the mem-
brane current is a sum of capacitive and ionic currents:

) _ 0AY,
Jm(lpm) =Cm at

where, j,, is the total membrane current density, V/, is a
membrane potential, Ay, is a transmembrane potential, ¢,
is a membrane specific capacitance, ¢ is the time variable,
and j. is the ionic current density.

It should be pointed out that Kirchhoff’s law for the
membrane current in Eq. 1 assumes the homogeneous flow
of the charge through the membrane. However, on the
biological basis, the transmembrane current is flowing
through ion channels and not through the whole cellular
membrane. The total channel cross-section area is less than
0.01% of the total membrane area (Nicholls et al. 2001). In
addition, the distance between channels of identical types
often can be even larger than the distance between the
cellular membrane and the sensor surface (the distance
between channels can be estimated from the conductivity
of the membrane and the channels).

In the case of a homogeneous charge flow in Eq. 1, the
value of the transmembrane current is the function of the
membrane conductivity only. However, if the charge
is transferred through the membrane channels, then the
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Fig. 2 Difference between homogenous (a) and heterogeneous
(b) membrane conductivity

conductivity of solution near the membrane should directly
influence the charge relaxation on membrane surfaces and,
consequently, the total membrane current (Fig. 2).

The present work proposes a theoretical model of het-
erogeneous membrane conductivity. The model is based on
the hypothesis that the electrical potential as well as charge
is distributed homogeneously on membrane surfaces
because of the transmembrane current inhomogeneity. The
model is expressed with a system of continuity equations
and has non-stationary and quasi-stationary forms.

To obtain parameters for the heterogeneous membrane
conductivity model, a charge flow through the single
membrane pore (channel) was computationally simulated.
The potential-to-charge ratio in the vicinity of the mem-
brane channel was estimated as a function of the membrane
capacitance, channel radius and average channel density
empirically.

In the next step the equivalent electric element of the
cellular membrane was developed. It was based on the
heterogeneous membrane conductivity model, which
implies that the membrane conductivity of the element has
dependence on the medium conductivity on both sides of
the membrane.

This equivalent electric element of the heterogeneous
membrane current was further employed in a model of the
cell-surface electric junction. Built in the form of the
equivalent electrical circuit, the model was used to evaluate
effects of heterogeneity in membrane conductivity on sig-
nal parameters. The main types of extracellular electrical
signals have been acquired when this model was subjected
to various cell-surface junction heights and junction
conductivities.

Model of heterogeneous membrane conductivity

When the charge is traveling in and out of the channel pore, it
creates the region of excess charge Q. and overpotential 1/,
just near the end of the channel. The values of the additional
excess charge Q. and overpotential iy, can be conveniently
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Fig. 3 Scheme of the heterogeneous membrane conductivity model:
relative positions of the excess Q. and homogeneous Q,, charges,
directions of the channel J, lateral J, and total membrane J,,, currents

defined in relation to a spatially homogeneous charge Q,,, and
potential i, on the rest of the membrane surface. The
existence of the overpotential near the pore allows defining a
transchannel potential (total local potential over the channel)
as the sum of Ay, + Ay, which is obviously different from
the simple transmembrane potential Ay/,,, and which actually
should be used when one calculates the conductance of the
potential-dependent channel.

Following this, a general scheme of the model can be
described as a two-step process: charge transfer into the
region with the excess charge near the end of the mem-
brane channel followed by the immediate drifting of the
transferred charge into the spatially homogeneous charge
region nearby (Fig. 3).

The rate of change of the excess charge Q. is the sum of
the current through the channel J. and a lateral relaxation
current J, as depicted in Fig. 3. At the same time the rate of
change of the spatially homogeneous charge Q,, is equal to
the sum of the lateral relaxation current J, and a trans-
membrane current J,, (the charge migration current). These
statements can be written as:

ang:_]e'i‘Jm7
Le = Jo — Je.

(2)

In the system of Eq. 2 the value of the lateral relaxation
current J, is the total current flowing inward through an
imaginary closed surface covering the excess charge Q. region.
Applying Ohm’s law and the Gauss-Ostrogradsky theorem to
Gauss’s law, the following equation can be derived:

19
Jo = _ng» (3)

where 0 is the conductivity of a solution and ¢ is the
dielectric permittivity of the solution.

Since the value of the current through the channel J,
now is a function of the total potential Ay, + Ay, and the
value of the transmembrane current is a function of the
spatially homogeneous potential y/,,, the system of Eq. 2
may be rewritten in the next form:

= (ESQe + Jm(wm)7

9On
{aa, (4)
% = _ng — (A, + AY).

In the system of Eq. 4, values of homogeneous and
excess charges relate to the homogeneous potential and
overpotential accordingly:

Qm = CmAl//mv
Qe = CmKelpe- (5)

where K. is a coefficient that connects values of the excess
charge and overpotential near the channel end. K. will be
discussed and estimated later.

Substitution of Eq. 5 into Eq. 4 gives a non-stationary
form of the heterogeneous membrane conductivity model:

{ Cn aAal,pm = ngKe‘pe =+ Jm(lrbm)7
CnKe e = — 2 CKethe — Je (A, + AYs,).

(6)

In the second equation of Eq. 6 the ratio &/ = 7 is a
time constant, which defines a rate of the excess charge
relaxation. In the case of physiological saline estimation
gives 7 &~ 107%s. It is much less than the channel
activation time. As a result one may conclude that the
excess charge reaches a stationary value much faster than
the homogeneous charge and transmembrane potential do.
With this condition met the second differential equation
can be replaced by the algebraic Eq. 7.

OAY, 5
{ Cm% = %CmKelpe +Jm(lpm)7

0=-— lé CmKelpe - Jc(Al//m + Al//e)' (7)

In the system of Eq. 7 performing addition of the second
equation to the first one leads to the equation (first in Eq. 8)
in a form similar to Eq. 1. The value of the overpotential
Y. could be derived from the second equation in Eq. 7. The
system of Eq.8 is a quasi-stationary form of the
heterogeneous membrane conductivity model.

{ Cn aAal,{/m = 7JC(Awm + Al//e) + Jm(lpm)ﬂ

_ e J(AYy+AY,) (8)
‘pe__ﬁ CnK- :

It can be seen from the second equation in Eq. 8 that the
smaller conductivity of the environment near the channels
pore is, the greater the overpotential might appear.

Homogeneous membrane conductivity (Eq. 1) is a spe-
cial case of a model of heterogeneous membrane conduc-
tivity (Eq. 8): the value of overpotential /. becomes
insignificant under the conditions that the conductivity of
solution ¢ and factor K. are big and/or the transchannel
current J, is small.

Channel density factor

The coefficient K, that binds values of the excess charge
and overpotential near the channel was introduced in the
second equation of Eq. 5. This coefficient has a natural
dependence both on the channel as well as on patch
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geometry and dimensions, making it hard to describe
analytically in general. However, numerical computational
simulations of the ion current flowing through the mem-
brane pore (channel) provide a convenient means to obtain
this coefficient at least for a specific case.

The geometry that was used in simulations represents a
cylinder separated into two halves with a membrane con-
taining a single pore. The cylinder has a height equal to
400 nm and a radius r,, = 200 nm. The thickness of the
membrane is 10 nm, and the radius of the pore is
r. = 0-200 nm. The whole geometry has an axial symme-
try. The compartment and channel are considered to be filled
with the 0.1 M binary aqueous electrolyte (KCI) at 300 K.
A relative permittivity of the membrane is equal to 4.

The transient drift—diffusion (Nernst-Planck-Poisson)
problem was used to describe the spatio-temporal distri-
bution of potential and charge within the system. Boundary
conditions for concentrations are considered the insulation
barrier at the compartment and membrane surfaces.
Boundary conditions that are related to the potential dis-
tribution were: absence of any charges on the side, top and
bottom surfaces of the geometry, continuity of the electric
potential on the membrane and pore boundaries. Potential
at a point in the middle of the membrane at the compart-
ment side was taken to be a zero reference potential.

The drift—diffusion problem was solved with the finite-
element method using a program environment of COM-
SOL Multiphysics (COMSOL Group). The application
modes were chosen to be the “Nernst-Planck without
Electroneutrality” and “Electrostatic.” The space dimen-
sion had 2D axial symmetry. A non-uniform grid with a
higher density near the membrane (element size 1 nm) and
pore (element size 0.1 nm) was used. Computations were
performed with the BDE time dependent solver and direct
(UMFPACK) linear system solver.

To set up the initial conditions the membrane was
allowed to be charged by applying the step of the trans-
membrane potential of 100 mV. The transmembrane
potential was applied by setting a fixed potential on the top
and bottom of the geometry compartments. At the appro-
priate time after this, the spatially homogeneous charge
appeared near the membrane. After the charging, the top
and bottom boundaries of the compartment were set to
have a zero charge, and the membrane started a slow dis-
charge process by ions drifting through the pore. During
the drifting phase the electric potential and surface charge
density at the plane of the membrane side were observed.
The surface charge density was obtained by integration of a
spatial charge density in the direction orthogonal to the
membrane. The simulation was performed for a set of
different radii of the pore: from 0 to 200 nm.

Results of the simulation for the channel radius
r. = 5 nm at an arbitrary selected time (as an example) are
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Fig. 4 Results of the solution for the mixed Nernst-Planck-Poisson
problem in cylindrical coordinates (z, ) for the channel of radius
r. = 5 nm in an arbitrary point of time: equipotential surfaces and
current lines

Fig. 5 Results of the solution for the mixed Nernst-Planck-Poisson
problem in cylindrical coordinates (z, r) for the channel of radius
r. = 5 nm in an arbitrary point of time: profiles of the potential and
surface charge density on the membrane/channel surface

shown in Fig. 4. Corresponding profiles of the potential
and surface charge density on the membrane/channel sur-
face are presented in Fig. 5.

Excess charge density g. and overpotential /. were
obtained in the point that laid on the channel axis just near
the channel end. From simulations for different channel
radii, the relationship between ¢, and s, was found to be
independent on the channel current, but it did depend on
the channel and patch radii (Fig. 6). This relationship
appeared to be well approximated by the curve given by
Eq. 9, where 4 is the Debye length:
qe 4A 4 re2rm —re

J =Cm ” ) 9)

The K. function is expressed by Egs. 5 and 9, using Q. =

m — Ic

nrfqe and Cy,, = 7rr12ncm7 to get the following formula:

2 "
R A4 12 — 1
K. S R ——
r;oore

p— (10)
Equation 10 can be further simplified in the case when:
Fm > r.—which means a low channel density—and
r. &~ J—which means that a minimal size of a screened
charge in the solution is equal to the Debye length. By
applying these assumptions, one can express:
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Fig. 6 Results of the solution for the mixed Nernst-Planck-Poisson
problem for different channel radii: relationship between the excess charge
density g, and overpotential i/, in the dependence on channel radius

)Z
K.=105. (11)

m
After introduction of the ion channel density n = 1 / 7Irr2n7
Eq. 11 can be rewritten as:

K. = 107>, (12)

Thus, the K. function can be called a channel density
factor.

Equivalent electric element of heterogeneous
membrane current

Equations of the heterogeneous membrane conductivity
model could be modified into the equivalent electric ele-
ment of membrane current that can be used in the cell-
surface junction point contact model.

The non-stationary form of the heterogeneous mem-
brane conductivity model in Eq. 6 can be rewritten in the
form of the following Eqgs. 13 and 14:

0A
Tuln) = G 204 11, (13)
where:
Je m) = —2CuKe,,
(l//) iy, - Alpfml//c) (14)
€ Cl“ € :

The system of Eq. 14 could be rewritten in terms of the
capacitance and current surface density:

je(wm) = _éCmK lpea

o — iy (At (15)

cmKe ’

The system of Eq. 15 describes the current density only
at one side of the membrane. To complete the membrane
description with a second side all equations in the system

of Eq. 15 were doubled for the inner (in) and outer (out)
current densities:

JEWR) = = ekl () = = emKar™,
%_ b—l//fc“ Jc(A'ﬁ‘]];cA¢c)7 w_t‘ 50"‘ o _,'_]c(A‘/;::;gCA‘//)’
Alﬁm !//m _ out
YA

(16)

Finally, currents were written down for all type of ions,
which in our case are Na, K and Cl:

3 () = = e 0y K", S (W) = = 5w X, K2UC™,

i gty A G I o J(Avm+AY2)
o K Om cmK! ’ ot ¢ e cmKY ’

ﬁinm _ lZ/n mn IVY oul

n = Na, K, Cl.

(17)

By analogy with Eqgs. 14-17 the quasi-stationary form
of the equivalent electric element takes the next form:

Jr ) = = () = it (A + AYL),

min _ & pout _ (A +AYE)
L L (18)
A — in __,Jout
Ai IZJH n 7wlpn out
n = Na, K, Cl.

Thus, Eq. 17 is the non-stationary form, and Eq. 18 is the
quasi-stationary form of the equivalent electric element of
the membrane heterogeneous current. The electrical current
in the equivalent element depends on the transmembrane
potential as well as on intra- and extracellular conductivities
of the solution.

Cell-surface junction point-contact model

The main interest, which remains till this point, is to figure
out how the heterogeneous membrane conductivity could
affect the shape of the recordable extracellular signal under
various conditions. One approach could be the develop-
ment of a simplified point-contact cell-surface junction
model describing the extracellular electrical arrangement
between the cell and the sensor.

A sufficiently simplified point-contact model that could
describe the experiment may include five compartments as
referred to in Fig. 7: a cell (c), an external solution (s), a
junction between a cell and a surface (j), a measuring
electrode (1) and, finally, a reference electrode (r).

Now in order to describe a cellular membrane the
equivalent electric element of the heterogeneous membrane
current should be used. The non-stationary form of the
equivalent electric element was exploited because of the
fact that a numerical solution of Eq. 17 is more stable. Ion
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Fig. 7 Equivalent circuit of the cell-surface junction point-contact
model (list of symbols in Table 1)

currents through channels j? were introduced by a set of
Hodgkin-Huxley equations (Hodgkin and Huxley 1952).

The Ohm’s law was applied to calculate currents
through other homogeneous borders. Values of parameters
and sizes of boundaries are summarized in the Table 1. To
calculate the seal conductance of the cleft the following
formula was used (Fromherz 2003):

Gj = 47'[5jh7 (19)

where 0; is the conductivity of the cleft, and 4 is the cleft
height.

Additional transmembrane current (0.3 nA) was injected
into the cell to stimulate electrical activity.

The equivalent circuit of the model corresponds to the
initial value problem for a first-order differential equation
system. Matlab software (MathWorks) multistep solver
odel5 s based on variable-order numerical differentiation
formulas was used to solve the problem.

Results and discussion

Parameters, which determine a type of cell-surface junc-
tion, are the conductivity of the cleft (d;) and the cleft
height (4). Both determine the seal conductance of the cleft
according to the Eq. 19. At the same time, the conductivity
of the cleft determines the value of the excess charge and
overpotential near the membrane channels according to
Egs. 4, 6. As a consequence, the conductivity of the cleft
influences the potential drop that appears across the chan-
nel, which in turn controls the channel current.

A decrease in the conductivity of the cleft results in
excess charge build up and overpotential increase near the
channel pore. For sodium channels the excess charge and
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Table 1 Parameters of the cell-surface junction point-contact model

Variables and parameters Symbol Value
Intracellular potential Vi
Potential in the cleft N
Potential of the measuring electrode !pin
Potential in an external solution i
Potential of a reference electrode Y 0 mV
Dielectric permittivity of the solution € 81-¢9 F/m
Debye length A 1 nm
Cleft height h 5-105 nm
Conductivity of the cleft 0j 0.06-1.80
S/m
Conductivity of the external solution s 1.8 S/m
Conductivity of the cell Oc 0.6 S/m
Total membrane current of a bottom cell J3 Ji S
patch
Total membrane current of a top cell patch Ji jJ;e . Sl;n
Capacitance of the top cell patch Cy Cm - Sy
Capacitance of the bottom cell patch a, Cm - S,
Capacitance of the measuring electrode C S
Capacitance of the reference electrode C, Sy
Capacitance of the measuring electrode in C, cuSu
substrate
Capacitance of the substrate Cq cq-Sq
Conductance of the measuring electrode G, 8eSe
Conductance of the reference electrode G, &St
Conductance of the measuring electrode in G, &gu-Su
substrate
Conductance of the substrate Gy 8a-Sa
Specific capacitance of the membrane Cm 50 mF/m?
Specific capacitance of the measuring Ce 2 mF/m?
electrode
Specific capacitance of the reference [ 2 mF/m?
electrode
Specific capacitance of the measuring cy 1 mF/m?
electrode in substrate
Specific capacitance of the substrate cq 3 mF/m?
Conductivity of the measuring electrode 8e 1 S/m?
Conductivity of the reference electrode g 1 S/m?
Conductivity of the measuring electrode in Su 1 mS/m?
substrate
Conductivity of the substrate g4 1 mS/m?
Area of the top cell patch S 2,000 pm?
Area of the bottom cell patch Sl;n 1,000 pmz
Area of the measuring electrode S 300 pm?
Area of the reference electrode Sr 1,000 mm?>
Area of the measuring electrode in substrate S, 300 pm?
Area of the substrate Sa 700 pm?
Channel density factor for sodium channels K} 1 x 10
Channel density factor for potassium KX 3 x 10°
channels
Channel density factor for chlorine channels K%' 2 x 10°
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overpotential in the cleft have negative values. This leads
to a more rapid transchannel potential depolarization (here
more rapid means when compared with the membrane
depolarization) and results in the early sodium channel
activation. On the contrary, for potassium channels, the
excess charge and overpotential in the cleft have positive
values. This lowers the transchannel potential depolariza-
tion (when compared with the membrane depolarization)
and reduces the potassium channel current (Fig. 8). A
further decrease of the conductivity brings the potential
difference over the channel down and leads to a further
current recession. This effect is similar to a channel clo-
sure. As result, the less the conductivity of the cleft is, the
more rapidly the sodium current increases and less of the
potassium current flows (Fig. 8).

Extracellular electrical signals simulated for different
values of the conductivity of the cleft and the cleft height
are shown in the Fig. 9.

Because of the low conductance of the measuring
electrode G, its potential lpln is equal to the potential in the

cleft lpjm. This electrical potential is controlled by Kirch-
hoff’s law, which takes the next form:
(Vo — Vi) ; OV — V)

G | ¢ o
Cq ot +lmeGj = Cm ot +Jlle(5j7~l]c)

(20)

When conductivity of the cleft is large, for example,
equal to the conductivity of the extracellular solution,
overpotential near the channels on the bottom and top
membrane halves is small and equal among themselves.
This situation is the symmetrical charge transfer process,
when ionic and capacitive currents have similar magni-
tudes but opposite directions. As a result the total mem-
brane current vanishes, and the extracellular potential has a
small amplitude (A-type signals on Figs. 9, 10).

Under conditions when the conductivity of the cleft is
moderate and the capacitance of the substrate is small, the cleft

Fig. 8 Shifts in the transchannel potential waveform for sodium
(dashed lines) and potassium (dotted lines) channels relative to the
transmembrane potential (solid lines) with the low conductivity in
the cleft

signal shape is proportional to the total membrane current, and
the signal amplitude depends on the seal conductance
(Eq. 20). This type of contact can be called “ohmic”. The total
membrane current now is the sum of the current through the
membrane capacitance with ionic currents through channels
(Eq. 20). A more rapid sodium current increase leads to a
more apparent first negative peak in the extracellular signal
shape (C, D-type signals in Figs. 9, 10).

3, S/m
A

A JVL A A A
1,80 [~ o a a
VAV Ve e

o T\ D D C C

R PR O e
g‘ D C C C
0,30*A o‘ m‘ w‘ S‘

ol B g‘ C C C
S I
N
1 1 1 1 L,

5 15 35 65 h,nm 105

Fig. 9 Dependence of extracellular signal amplitudes (amplitude in
mV, signal duration is 15 ms) and shapes (A, B, C, D-type) on the
cleft height and on the conductivity of the cleft

40 mV

l4\nA

E
=
A
8=0,9 S/m 8=0,3 S/m 8=0,12 S/m 8=0,06 S/m
h=5 nm h=15 nm h=35 nm h=65 nm

Fig. 10 Main types of extracellular electrical signals (in the third
row) and corresponding to them: transchannel (dashed lines Na,
dotted lines K) and transmembrane (solid lines) potentials (in the first
row), currents (dashed lines Na, dotted lines K, solid lines capacitive)
(in the second row), the lateral conductivity and the cleft height (in
the fourth row)
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In the situation when the conductivity of the cleft is very
small, say approximately 30 times less than the conduc-
tivity of the extracellular solution, the seal conductance as
well as the potential difference across the channel is con-
siderably small. If this potential falls below an excitation
threshold, ionic channels of the bottom cellular membrane
may not be activated. In this case the extracellular signal
(//Jm is proportional to the intracellular potential , and the
amplitude of the signal depends on the membrane and
substrate capacitances (Eq. 20). This type of contact can be
called “capacitive”. For this contact type, the amplitude of
the extracellular signal increases because of the decrease in
the seal conductance (B-type signals in Figs. 9, 10).

It is interesting to note that all signals in Fig. 9 were
obtained with the same value of the seal conductance of the
cleft ~54 nS (according to the Eq. 10), which corresponds
to the seal resistance value of 18.5 MOhm.

Signals with shapes corresponding to the main types
(A-, B-, C-, D-type) of extracellular signals, which were
found experimentally and described by other authors
(Jenkner and Fromherz 1997; Schatzthauer and Fromherz
1998; Fromherz 1999), could be seen among simulated
extracellular signals (Figs. 9, 10). Shapes of other signals
represent a combination of these basic types of signals.

Conclusion

With the aid of the heterogeneous membrane conductivity
model, it was shown that changes in the passive cell-sur-
face junction characteristics (like the conductivity of the
cleft and the cleft height) may appear to be a sufficient
cause of different types of extracellular signals.

Without any doubt the proposed heterogeneous mem-
brane conductivity model describes only one of the possi-
ble mechanisms of extracellular signal formation. The
heterogeneous membrane conductivity mechanism was
tested alone to show its applicability in the presented point-
contact model of the cell-surface junction. To describe or
simulate a full realistic picture of the signal formation
process, one has to take into consideration all possible
mechanisms mentioned in the introduction.

The effects of the heterogeneous membrane conductiv-
ity will be significant if signals are registered in close
cell-electrode contact. If the cells are far away from the
electrode, then the relative position of the cell soma and
neurites will determine the signal shape (Gold et al. 2006).

The point-contact model was used to simulate signal
recording from a current-stimulated cell. Cell stimulation
can also be simulated by applying a constant or variable
electric potential in one of the nodes (V< Y4 yi y3) of
the equivalent circuit of the cell-surface junction (Fig. 7).
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The heterogeneous membrane conductivity model is
heavily based on continuum electrostatics to describe the
charge and potential near the membrane channel. Of
course, at the nanometer level Brownian and molecular
dynamics methods could be preferred over the Nernst-
Planck-Poisson method (Corry et al. 2000). But the Nernst-
Planck-Poisson theory is very useful for the ensemble-
averaged description.

Hodgkin-Huxley equations, which were used to describe
currents through channels (Hodgkin and Huxley 1952),
could be altered to reflect other sorts of ion channels with
the current kinetics different for various types of cells.
However, as a result, extracellular signal shapes could be
changed to some extent.

The cleft height in the average cell-surface junction
was reported to be 50-70 nm (Fromherz 2003). A wider
range of the cleft heights was intentionally used in the
simulation to demonstrate the signal waveform and
amplitude dependence on the height.

It is also necessary to note that the conductivity of the
cleft together with the cleft height unambiguously deter-
mines the electric properties of the cell-surface junction.
Therefore, they can be used as the characteristic properties
of the cellular adhesion to various surfaces.
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